Fragmentation of CF₃COCH₃ Radical Cations in a Freon Matrix

Christopher J. Rhodes and Martyn C. R. Symons

Department of Chemistry, The University, Leicester LE1 7RH, U.K.

Exposure of a dilute solution of CF_3COCH_3 in $CFCl_3$ to ionising radiation at 77 K yields $\cdot CF_3$ radicals, formed, presumably, by fragmentation of the radical cation; on annealing, the e.s.r. signal due to $\cdot CF_3$ decreases in intensity and is replaced by a 22 G triplet (1 G = 10⁻⁴ T), which we assign to $\cdot CH_2C\equiv 0$ radicals, formed by hydrogen atom abstraction from $CH_3C\equiv 0$ cations by the $\cdot CF_3$ radicals.

The technique of exposing dilute freon solutions of various substrates to ionising radiation at low temperatures has been successfully used to produce the radical cations of a wide variety of compounds.¹

As part of an effort to extend this range to fluorinated

derivatives, we treated CF₃COCH₃ in this way, but instead of observing an e.s.r. spectrum assignable to the parent cation, we obtained a spectrum characteristic of randomly oriented \cdot CF₃ radicals.^{2,3} Under these conditions, direct radiolysis of the substrate is negligible,⁴ and the 'positive hole' transfer

mechanism will dominate the initial chemistry, giving rise to the CF₃C \dot{O} CH₃ radical cation. This must fragment in order to give rise to the \cdot CF₃ radical; the additional fragment, the CH₃C \equiv \dot{O} cation, being isoelectronic with cyanomethane must be relatively stable, and presumably provides part of the driving force for this process. It is curious, however, that when CH₃COCH₃ is irradiated in CFCl₃, only the spectrum of the parent radical cation is observed.⁵ Even on annealing to the matrix softening point, we were unable to detect the formation of \cdot CH₃ radicals. Thus reaction (1) is complete at 77 K whilst (2) does not occur even at *ca.* 160 K.

$$CF_3(CH_3)C=\dot{O}^+ \rightarrow \cdot CF_3 + CH_3CO^+$$
 (1)

$$(CH_3)_2 C = \dot{O}^+ \rightarrow \cdot CH_3 + CH_3 CO^+$$
(2)

One factor which may well be important is that the geometry of the CF₃ fragment is largely retained on bond fission, whereas the CH₃ group must change from its pyramidal structure in the acetone cation to its normal planar structure in the radical. This requirement of a major change in shape may provide an extra barrier to bond breaking.⁶ Also, delocalisation onto the three fluorine ligands, illustrated by the large ¹⁹F hyperfine coupling, will help to stabilise •CF₃ relative to •CH₃.

On annealing, the spectrum of $\cdot CF_3$ first shows shifts of anisotropic features towards the expected isotropic positions, as a result of greater librational motion of the $\cdot CF_3$ radicals,

followed by a decrease in the intensity of the \cdot CF₃ signal, with the concomitant development of a 22.3 G 1:2:1 triplet (1 G = 10⁻⁴ T). We interpret this result as being due to a reaction within the solvent cage, in which the \cdot CF₃ radicals abstract hydrogen atoms from the CH₃C= $\stackrel{+}{O}$ fragment:

$$\cdot CF_3 + CH_3C \equiv \stackrel{\circ}{O} \rightarrow CF_3H + \cdot CH_2C \equiv \stackrel{\circ}{O}$$
(3)

The 22.3 G coupling is higher than the 21.2 G α -proton coupling reported for the isoelectronic \cdot CH₂CN radical in solution.⁷ This is probably because the energy of the C–O π -bond levels is lower than that of the C–N π -levels, resulting in less electron spin delocalisation onto the –C=O group.

Received, 10th October 1986; Com. 1455

References

- 1 M. C. R. Symons, Chem. Soc. Rev., 1984, 13, 393.
- 2 J. Maruani, C. A. McDowell, H. Nakakima, and P. Raghunathan, Mol. Phys., 1968, 14, 349.
- 3 K. Mach, Coll. Czechoslov. Chem. Commun., 1972, 37, 923.
- 4 H. Kubodera, T. Shida, and K. Shimokoshi, J. Phys. Chem., 1981, 85, 2593.
- 5 P. J. Boon, L. Harris, M. T. Olm, J. L. Wyatt, and M. C. R. Symons, *Chem. Phys. Lett.*, 1984, **106**, 408.
- 6 T. N. Bell and P. G. Perkins, J. Phys. Chem., 1977, 81, 2012.
- 7 H. G. Benson, A. J. Bowles, A. Hudson, and R. A. Jackson, *Mol. Phys.*, 1971, **20**, 713.